1. 国家自然科学基金青年基金:有向图中不相交的圈及相关问题研究, 2016.01-2018.12, 主持. 2. 山东省自然科学基金面上项目:竞赛图与类竞赛图的圈结构研究, 2015.07-2017.12, 主持. 3. 山东省自然科学基金青年基金:有向图共轭圈问题的计算机实现, 2011.12—2014.12, 主持. 4. 山东省高等学校科技计划项目:有向图的圈问题基于计算机方法的研究,   2012.6—2014.12,  主持. 5. 国家自然科学(面上)基金:地图理论研究:正则、半正则凯莱地图以及地图的外对称,  2014.01-2017.12, 参与    | 
   
   
    代表性论文   ●  Zhihong He(何志红)*, Mei Lu, Super  edge –connectivity and Zeroth-order Randic Index, Discussiones   Mathematicae  Graph Theory, 2018, in press.   ●  Zhihong He(何志红)*, Mei Lu, Super  edge-connectivity and zeroth-order general   Randić index for −1 ≤ α < 0, Acta Mathematicae Applicatae Sinica, English Series,   2018,  34(4), 659-668.   ●  Zhihong He(何志红)*, Guojun Li, Super edge-connectivity and zeroth-order Randi\'{c}   index , operations  Research Society of China, 2018, DOI:   10.1007/s40305-018-0221-7.   ●  Zhihong He(何志红)*, Xiaoying Wang, and Caiming Zhang,Complementary Cycles inIrregular Multipartite   Tournaments,Mathematical   Problems in Engineering,Volume 2016, Article ID 5384190, 7 pages,http://dx.doi.org/10.1155/2016/5384190.   ●  Zhihong He(何志红)*, Lutz Volkmann and Yan Wang, Complementary cycles in almost   regular multipartite tournaments, Ars Combinatoria, 2014, 113A: 201-224.   (SCI)   ●  Zhihong He(何志红)*, Disjoint cycles in irregular multipartite tournaments,   International Journal of Digital Content Technology and its Applications ,   2014, 8(5): 111 - 122.   ●  Xiaoying Wang and Zhihong He(何志红)*, A note on the existence of complementary   cycles in irregular multipartite tournaments , International Journal of   Digital Content Technology and its Applications, 2014,  8(6): 83 - 88.   ●  Zhi-Hong He(何志红)*, Guo-Jun Li  and Xue-qin Zhou, Componentwise complementary   cycles in multipartite tournaments, Acta Mathematicae Applicatae Sinica,   English Series, 2012, 28(1): 201-208.    ●  Zhihong He(何志红)*,Yan   Wang, Weakly cycle complementary 3-partite tournaments, Graph and   Combinatorics, 2011, 27: 669-683.    ●  Zhihong He(何志红),Torsten   Korneffel,Dirk   Meierling,Lutz   Volkmann* and Stefan Winzen, Complementary cycles in regular multipartite tournaments,where one cycle has length   five, Discrete   Mathematics, 2009, 309: 3131-3149.  |